ფუნდამენტური და ინტერდისციპლინარული მათემატიკური კვლევების ინსტიტუტი
ინსტიტუტის სამეცნიერო-კვლევითი საქმიანობა მიმდინარეობს ოთხი კვლევითი პროგრამის შესაბამისად:
- არაწრფივი დინამიკა და გლობალური ანალიზი;
- მათემატიკის საფუძვლები და კომბინატორიკა;
- უწყვეტ გარემოთა მექანიკა;
- ფუნქციონალურ-დიფერენციალური და ჩვეულებრივი დიფერენციალური განტოლებები.
პროგრამები ჩამოყალიბებულია არსებული კვლევითი პოტენციალის სპეციფიკისა და მაქსიმალური კოორდინაციის გათვალისწინებით. პროგრამების სავარაუდო ხანგრძლივობა 10-15 წელია.
კვლევის ძირითადი მიმართულებები:
- არაწრფივი დინამიკა და გლობალური ანალიზი;
- მექანიზმებისა და ნანოსტრუქტურების გეომეტრია და ტოპოლოგია;
- ზომის თეორია და სიმრავლეთა დესკრიფციული თეორია;
- კომბინატორული და დისკრეტული გეომეტრია;
- დრეკადობის თეორიის მათემატიკური მოდელები;
- სასაზღვრო ამოცანები ფუნქციონალურ-დიფერენციალური განტოლებებისათვის.
ინსტიტუტის კვლევის ძირითადი მიმართულებები ჩამოყალიბებულია შემდეგი ოთხი პრინციპის საფუძველზე:
- ამ მიმართულებით მიმდინარეობს აქტიური კვლევები მსოფლიოს რამდენიმე წამყვან მათემატიკურ ცენტრში;
- ფაკულტეტის წევრებს აქვთ ამ მიმართულებებით კვლევის საკმარისი კვალიფიკაცია, გამოცდილება და მნიშვნელოვანი შედეგები;
- ყველა ეს მიმართულება ეფუძნება ფუნდამენტურ მათემატიკურ თეორიებს და, ამავე დროს, პერსპექტიულია პრაქტიკული გამოყენების თვალსაზრისით;
- ფაკულტეტის წევრებს აქვთ სტაბილური კონტაქტები და თანამშრომლობა ამ დარგების წამყვან უცხოელ სპეციალისტებთან.
- პირველი მიმართულების ფარგლებში შესწავლილი იქნება: არაწრფივი სისტემების მათემატიკური მოდელირებისა და მდგრადობის შესწავლის მეთოდები, მათემატიკური ფიზიკის არაწრფივი ინტეგრირებადი მოდელების ანალიზური და თვისობრივი გამოკვლევის მეთოდები, განტოლებათა არაწრფივი სისტემის ნამდვილ ამონახსნთა რიცხვის ალგორითმული გამოთვლის მეთოდები, განტოლებათა არაწრფივი სისტემის ამონახსნთა სიმრავლის ტოპოლოგიური ინვარიანტების გამოთვლის ალგებრული მეთოდები, არაწრფივი დინამიური სისტემების მდგრადობისა და ბიფურკაციის საკითხები, კომპლექსური სისტემების მდგრადობის შემოწმების ალგორითმული მეთოდები, კვანძებისა და შემოხლართული კვანტური სისტემების დინამიკის გამოკვლევა.
- მეორე მიმართულების ფარგლებში შესწავლილი იქნება: მექანიზმებისა და რობოტების კონფიგურაციული სივრცეები, ექსტრემალური ამოცანები კონფიგურაციულ სივრცეებზე, მექანიზმების კინემატიკური განსაკუთრებულობები, ტენსეგრიტის ტიპის სისტემებისა და ნანოსტრუქტურების კონფიგურაციული სივრცეები, ტენსეგრიტის ტიპის სისტემების მდგრადი კონფიგურაციების გეომეტრია, კავშირები ნანოსტრუქტურის გეომეტრიის, ტოპოლოგიისა და ფიზიკურ თვისებებს შორის.
- მესამე მიმართულების ფარგლებში შესწავლილი იქნება: სიმრავლეთა და ფუნქციათა ზომადობის ცნების გაღრმავება და შემდგომი განზოგადება (უნივერსალური ზომადობა, ფარდობითი ზომადობა და აბსოლუტური არაზომადობა); ამ ცნებებზე დაყრდნობით სიმრავლეთა და ფუნქციათა კლასიფიკაცია; ზომადობის ცნების კავშირები ბერის ტოპოლოგიურ თვისებასთან და ტოპოლოგიის სხვა საკითხებთან; ეკზოტიკური დესკრიფციული სტრუქტურის მქონე ფუნქციები და წერტილოვანი სიმრავლეები ზომისა და ბერის კატეგორიის თვალსაზრისით.
- მეოთხე მიმართულების ფარგლებში შესწავლილი იქნება: ევკლიდურ სივრცეში მდებარე ამოზნექილი მრავალწახნაგების კომბინატორული სტრუქტურა, მრავალწახნაგთა და უფრო ზოგადი გეომეტრიული ფიგურების ტოლშედგენილობის კრიტერიუმების დადგენა, დისკრეტული წერტილოვანი სისტემების ძირითადი მახასიათებლები და მათი გამოყენება პრაქტიკულ ამოცანებში.
- მეხუთე მიმართულების ფარგლებში შესწავლილი იქნება: დრეკადობის, თერმოდრეკადობისა და მიკროპოლარული თეორიების სტატიკის, მდგრადი რხევისა და დინამიკის სამგანზომილებიანი ამოცანები მიკროსტრუქტურის მქონე სხეულებისათვის (ნარევები, კომპოზიტები, ფოროვანი მასალები და სხვა), ამ სხეულებში რეზონანსული მოვლენების არსებობის საკითხი, მდგრადი რხევის შიგა სასაზღვრო ამოცანების საკუთრივი სიხშირეების არსებობა, ბრტყელი ტალღების ძირითადი თვისებები.
- მეექვსე მიმართულების ფარგლებში შესწავლილი იქნება: წრფივი და არაწრფივი ჩვეულებრივი დიფერენციალური და ფუნქციონალურ-დიფერენციალური განტოლებებისათვის სასაზღვრო ამოცანების თეორია (კოშის, კოში-ნიკოლეტის, დირიხლეს, ნეიმანის, პერიოდული და ზოგადი სასაზღვრო ამოცანები), აგრეთვე მდგრადობისა და კორექტულობის საკითხები, ასიმპტოტური თეორია და კავშირი მათ შორის, კერძოდ, არაწრფივი ამოცანები შეისწავლება როგორც რეზონანსულ, ისე არარეზონანსულ შემთხვევებში და განხილული იქნება, როგორც რეგულარული, ისე სინგულარული განტოლებები.
პუბლიკაციები
2020
- Svanadze, Potential Method in the coupled theory of elastic double-porosity materials, Acta Mechanica, 2020
- Svanadze, Potential Method in the coupled linear theory of porous elastic solids, Mathematics and Mechanics of Solids, vol. 25(3), pp. 768-790, 2020
- G.Khimshiashvili, Isoperimetric duality in polygon spaces, Bull. Georgian Natl. Acad. Sci. vol.14 (2020), no.1, 18-22.
- G.Khimshiashvili, G.Panina, D.Siersma, Extremal areas of polygons with fixed perimeter. J. Math. Sci. (N.Y.) vol.247 (2020), no. 5, 731-737.
- G.Giorgadze, G.Khimshiashvili, On three point charges on a flexible arc. Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., vol.177 (2020), 63–68.
- G.Giorgadze, G.Khimshiashvili, On area foliation in spaces of triangles, Bull. Georgian Natl. Acad. Sci. vol.15 (2020), no.2, 7-13.
- G.Khimshiashvili, Dual extremal problems in polygon spaces, Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics vol.34, 2020, 46-49.
- G.Khimshiashvili, Symmetric foliations in spaces of triangles, Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics vol.34, 2020, 50-53.
- G.Khimshiashvili, G.Panina, D.Siersma, Area-perimeter duality in polygon spaces. Math. Scand. 2021. 10 pp.
- G.Giorgadze, G.Khimshiashvili, On stable equilibrium points of three point charges. Proc. I. Vekua Institute of Applied Mathematics
2019
- G.Khimshiashvili, Remarks on quadratic mappings. J. Math. Sci. (N.Y.) 23, 2019, no.1, 135–146.
- G.Khimshiashvili, G.Giorgadze, Equilibria of three-point charges with quadratic constraints. J. Math. Sci. (N.Y.) 237, 2019, no. 1, 110–125.
- G.Khimshiashvili, G.Panina and D.Siersma, Extremal areas of polygons with a fixed perimeter. Zapiski V.Steklov Math. Inst. SPb. Branch 481, 2019, 136-145.
- G.Khimshiashvili, D.Siersma, Connecting cycles for concentric circles, Bull. Georgian Natl. Acad. Sci. 13, No.1, 2019, 13-21.
- G.Khimshiashvili, N.Machavariani , Milnor algebras of invertible polynomials, Bull. Georgian Natl. Acad. Sci. 13, No.2, 2019, 11-16.
- G.Khimshiashvili, Extremal problems in Kendall shape spaces, Bull. Georgian Natl. Acad. Sci. 13, No.4, 2019, 7-11.
- M. Svanadze, Fundamental solutions in the linear theory of thermoelasticity for solids with tripleporosity, Mathematics and Mechanics of Solids, vol. 24(4), pp. 919–938, 2019.
- M. Svanadze, On the linear theory of double porosity thermoelasticity under local thermal non equilibrium, J. Thermal Stresses, vol. 42(7), pp. 890-913, 2019.
- M. Svanadze, Potential method in the theory of thermoelasticity for materials with triple voids, Archivesof Mechanics, vol. 71, N 2, pp. 113-136, 2019.
- G.Rakviashvili, On algebraic K-functors of crossed restricted enveloping algebras of Lie p- algebras. Bull. Georgian Natl. Acad. Sci. 13, No. 4, 2019, 12-19.
- S.Mukhigulashvili, V.Novotna, Some two-point problems for second-order integro-differential equations with argument deviations, Topol. Methods Nonlinear Anal. (2019).
- S.Mukhigulashvili, M.Manjikashvili, Dirichlet BVP For The Second-Order Nonlinear Ordinary Differential Equations At Resonance. Mathematical Modelling and Analysis, 24, No.4, 2019, 585-597.
2018
- G.Khimshiashvili, On equilibrium concyclic configurations, Doklady Mathematics 98, No.1, 377-381, 2018. (with G.Giorgadze)
- G.Khimshiashvili, Regular stars as critical points, Bull. Georgian Natl. Acad. Sci. vol.12, No.4, 13-18, 2018. (with G.Panina and D.Siersma)
- G.Khimshiashvili, Equilibria of point charges in a line segment, Proc. I.Vekua Inst. Appl. Math. 68, 23-32, 2018. (with G.Giorgadze)
- G.Khimshiashvili, Three-point charges on flexible contour, Proc. I.Vekua Inst. Appl. Math. 68, 33-38, 2018. (with G.Giorgadze and I.Murusidze)
- M. Svanadze, Potential method in the theory of elasticity for triple porosity materials, J. Elasticity, vol. 130, Issue 1, pp. 1-24, 2018.
- M. Svanadze, Steady vibrations problems in the theory of elasticity for materials with double voids, Acta Mechanica, vol. 229, pp. 1517–1536, 2018.
- M. Svanadze, Potential method in the linear theory of triple porosity thermoelasticity, J. Math. Anal. Appl., vol. 461, pp. 1585–1605, 2018.
- M. Svanadze, On the linear equilibrium theory of elasticity for materials with triple voids, Quart. J. Mech. Appl. Math., vol. 71, pp. 329-248, 2018.
- S.Mukhigulashvili, The mixed BVP for the second-order nonlinear ordinary differential equation at resonance. Miskolc Math. Notes 18, no. 2, 975-992, 2018.
- G.Rakviashvili. On algebraic K-functors of crossed group rings and its applications. Tbilisi Mathematical Journal 11(2) (2018), pp. 1-15.
- G.Rakviashvili, Inductive theorems and projective modules over crossed group rings, Bull. Georgian Natl. Acad. Sci. 12, No.1, 16-19, 2018.
- G. Rakviashvili, The Measuring of the Gini, Theil and Atkinson Indices for the Georgia Republic and Some other Countries. Globalization and Business, 2018, No. 5, 110-118.
- T.Aliashvili, On stable endomorphisms of the plane, Proc. I.Vekua Inst. Appl. Math. 68, 3-9, 2018.
2017
- M. Svanadze, Boundary value problems of steady vibrations in the theory of thermoelasticity for materials with double porosity structure, Archives of Mechanics, vol. 69, No. 4-5, pp. 347-370, 2017.
- M. Svanadze, Potential method in the linear theory of triple porosity thermoelasticity, J. Math. Anal. Appl., 2017
- B. Straughan, M. Svanadze, On the linear theory of double porosity thermoelasticity under local thermal non-equilibrium, J. Elasticity, 2017
- M. Svanadze, Fundamental solutions in the linear theory of thermoelasticity for solids with triple porosity, Mathematics and Mechanics of Solids, 2017
- M. Svanadze, On the linear equilibrium theory of elasticity for materials with triple voids, Quart. J. Mech. Appl. Math. 2017
- G.Khimshiashvili, G.Panina, D.Siersma, V.Zolotov, Point charges and polygonal linkages, J. Dyn. Control Syst., vol.23, No.41, 2017, 1-17.
- G.Khimshiashvili, Discrete invariants of quadratic endomorphisms, Bull. Georgian Natl. Acad. Sci. vol.11, No.3, 2017, 7-13.
- G.Khimshiashvili, Equilibria of point charges on elastic contour, Bull. Georgian Natl. Acad. Sci. vol.11, No.4, 2017, 9-15.
- G.Khimshiashvili, Extremal problems for bicentric quadrilaterals, Transactions of Ajara Regional Scientific Center of Georgian National Academy of Sciences, vol.2, 2017, 9-16.
- G.Khimshiashvili, Concyclic and aligned configurations of point charges, Proc. I.Vekua Inst. Appl. Math. 67, 2017, 35-46. (with G.Giorgadze)
- M. Svanadze, Potential method in the theory of elasticity for triple porosity materials, J. Elasticity, 2017
- M. Svanadze, Steady vibrations problems in the theory of elasticity for materials with double voids, Acta Mechanica, 2017
- M. Svanadze, External boundary value problems in the quasi-static theory of thermoelasticity for triple porosity materials, PAMM-Proceedings in Applied Mathematics and Mechanics, vol. 17, Issue 1, 2017
- M. Svanadze,Potential method in the linear theory of triple porosity thermoelasticity, J. Math. Anal. Appl., 2017
- S.Mukhigulashvili, The mixed BVP for second order nonlinear ordinary differential equation at resonance. Math. Nachr. 290(2017), no. 2-3, 393–400.
- S.Mukhigulashvili, On one two-point BVP for the fourth order linear ordinary differential equation. Georgian Math. J. 24 (2017), no. 2, 265–275. (with M.Manjikashvili)
- T.Aliashvili, On the complex points of random polynomials, Bull. Georgian Natl. Acad. Sci. 11, No.1, 2017, 12 – 15.
2016
- G.Khimshiashvili, G.Panina, D.Siersma, Equilibria of three constrained point charges, J. Geom.Phys. 106, No.1, 2016, 42–50.
- G.Khimshiashvili, Configurations of points as Coulomb equilibria, Bull. Georgian Natl. Acad. Sci. v.10, No.1, 2016, 20-27.
- G.Khimshiashvili, Remarks on homogeneous endomorphisms, Proc. I. Vekua Inst. Appl. Math. 66, 2016, 15-24.
- G.Khimshiashvili, N.Sazandrishvili, Extremal problems for sliding polygons, Proc. I. Vekua Inst.Appl. Math. 66, 2016, 25-32.
- M.Svanadze, Plane waves, uniqueness theorems and existence of eigenfrequencies in the theory of rigid bodies with a double porosity structure, In: B. Albers and M. Kuczma (eds), Continuous Media with Microstructure 2, pp. 287-306, Springer, 2016.
- M.Svanadze, Fundamental solutions in the theory of elasticity for triple porosity materials, Meccanica,vol. 51, pp. 1825-1837, 2016.
- M.Svanadze, On the linear theory of thermoelasticity for triple porosity materials, In: M. Ciarletta, V. Tibullo, F. Passarella (eds), Proceedings of the 11th International Congress on Thermal Stresses, 5-9 June, 2016, Salerno, Italy, pp. 259-262, 2016.
- M.Svanadze, External boundary value problems in the quasi-static theory of elasticity for triple porosity materials, PAMM-Proceedings in Applied Mathematics and Mechanics, vol. 16, Issue 1, pp. 495-496, 2016.
- G.Rakviashvili, On Regular Cohomologies of Biparabolic Subalgebras of sl(n), Bull. Georgian Natl.Acad. Sci. v.10, No.2, 2016, 20-24.
- T.Aliashvili, Topological invariants of random polynomials, Bull. Georgian Natl. Acad. Sci. v.10, No.4, 2016, 7-16.
2015
- G.Khimshiashvili, Equilibria of point charges on convex curves, J. Geom. Phys. 98, 2015, 110-117. (with G.Panina and D.Siersma) 2014
- G.Khimshiashvili, Point charges and polygonal linkages, J. Dynam. Contr. Syst. 12 p., published online June 2015. (with G.Panina and D.Siersma) 2014
- G.Khimshiashvili, On non-degeneracy of certain constrained extrema, Doklady Math. 465, No.3, 2015, 1-5. (with G.Giorgadze) 2014/2015
- G.Khimshiashvili, Cross-ratios of quadrilateral linkages, J. Sing. 13, 2015, 159-168. (with D.Siersma) Remarks on bicentric quadrilaterals, Proc. A.Razmadze Math. Inst. 168, 2015, 41-52.
- G.Khimshiashvili, Equilibria of point charges in convex domains, Bull. Georgian Natl. Acad. Sci. 9, No.2, 2015, 19-26. (with G.Giorgadze)
- G.Khimshiashvili, Equilibria of point charges on nested circles, Bull. Georgian Natl. Acad. Sci. 9, No.3, 2015, 43-49. (with G.Giorgadze)
- E.Scarpetta, M.Svanadze, Uniqueness theorems in the quasi-static theory of thermoelasticity for solids with double porosity, J. Elasticity, vol. 120, No 1, pp. 67-86, 2015 Impact factor – 1. 656.
- M.Svanadze, External boundary value problems of steady vibrations in the theory of rigid bodies with a double porosity structure, PAMM-Proceedings in Applied Mathematics and Mechanics, vol. 15, Issue 1, pp. 365-366, 2015
2014
- G.Khimshiashvili, G.Panina, D.Siersma, Coulomb control of polygonal linkages, J. Dyn. Control Syst., vol.20, No.4, 2014, 491-501.
- G.Khimshiashvili et. al., Proc. of 98th European Study Group with Industry, The Mathematics of French Fries, 24-33, Delft Technical University, 2014. (ISBN: 978-94-6186-306-5)
- G.Khimshiashvili, Cross-ratios of poristic quadrilaterals, Proc. I.Vekua Inst. Appl. Math., vol.64, 2014, 37-46.
- G.Rakviashvili, Primitive elements of free Lie p-algebras, Bull. Georgian Natl. Acad. Sci., vol. 8, no. 2, 2014, 15–18.
- M.Svanadze, Uniqueness theorems in the theory of thermoelasticity for solids with double porosity, Mecanicca, vol. 49, Issue 9, pp. 2099-2108, 2014.
- M.Svanadze, E. Scarpetta, V. Zampoli, Fundamental solutions in the theory of thermoelasticity for solids with double porosity, J. Thermal Stresses, vol. 37, No 6, pp. 727-748, 2014
- M.Svanadze, M. Ciarletta, F. Passarella, Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity, J. Elasticity, vol. 114, Issue 1, pp. 55-68, 2014.
- M.Svanadze, On the theory of viscoelasticity for materials with double porosity, Discrete and Continuous Dynamical Systems – Series B (DCDS-B), vol. 19, No 9, pp. 2335-2352, 2014.
- M.Svanadze, A.Scalia, Potential method in the theory of thermoelasticity with microtemperatures for microstretch solids, Transaction of Nanjing University of Aeronautics and Astronautics, vol. 31, Issue 2, pp, 159-163, 2014.
- M.Svanadze, Basic theorems in thermoelastostatics of bodies with microtemperatures, In: R.B. Hetnarski (ed), Encyclopedia of Thermal Stresses, 11 Volumes, 1st Edition, Springer, pp. 355-365, 2014.
- M.Svanadze, Fundamental solutions in thermoelasticity theory, In: R.B. Hetnarski (ed), Encyclopedia of Thermal Stresses, 7 Volumes, 1st Edition, Springer, 11 Volumes, 1st Edition, Springer, pp. 1901-1910, 2014.
- M.Svanadze, Fundamental solutions in thermoelastostatics of micromorphic solids, In: R.B. Hetnarski (ed), Encyclopedia of Thermal Stresses, 11 Volumes, 1st Edition, Springer, pp. 1910-1916, 2014.
- M.Svanadze,Large existence of solutions in thermoelasticity theory of steady vibrations, In: R.B. Hetnarski (ed), Encyclopedia of Thermal Stresses, 11 Volumes, 1st Edition, Springer, pp. 2677-2687, 2014.
- M.Svanadze, Potentials in thermoelasticity theory, In: R.B. Hetnarski (ed), Encyclopedia of Thermal Stresses, 11 Volumes, 1st Edition, Springer, pp. 4013-4023, 2014.
- M.Svanadze, A. Scalia, Representations of solutions in thermoelasticity theory, In: R.B. Hetnarski (ed), Encyclopedia of Thermal Stresses, 11 Volumes, 1st Edition, Springer, pp. 4194-4203, 2014.
- M. Ciarletta, F. Passarella, M. Svanadze, Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity, Elasticity, vol. 114, Issue 1, pp. 55-68, 2014.
2013
- G.Khimshiashvili, Complex geometry of polygonal linkages, J. Math. Sci. 189, No.1, 2013, 132-149.
- G.Khimshiashvili, On Poncelet porism for biquadratic curves, Bull. Georgian Natl. Acad. Sci. 7, No.1, 2013, 5-10.
- G.Khimshiashvili, Equilibria of constrained point charges, Bull. Georgian Natl. Acad. Sci. 7, No.2, 2013, 15-20.
- G.Khimshiashvili, G.Giorgadze, Cyclic configurations of spherical polygons, Doklady Akad. Nauk 450, No.3, 2013, 264-267.
- G.Khimshiashvili, D.Siersma, Critical configurations of planar multiple penduli, J. Math. Sci. 195, No.2, 2013, 198-212.
- G.Khimshiashvili, G.Khimshiashvili, G.Panina, D.Siersma and A.Zhukova, Critical configurations of planar robot arms, Centr. Eur. J. Math. 11, No.3, 2013, 519-529.
- M.Svanadze, A.Scalia, Mathematical problems in the coupled linear theory of bone poroelasticity, Comp. Math. Appl., vol. 66, No 9, pp. 1554-1566, 2013.
- M.Svanadze, S. De Cicco, Fundamental solutions in the full coupled linear theory of elasticity for solid with double porosity, Archives of Mechanics, vol. 65, No 5, pp. 367-390, 2013.
- M.Svanadze, Fundamental solution in the linear theory of consolidation for elastic solids with double porosity, J. Math. Sci., vol. 195, Issue 2, pp. 258-268, 2013.
- M.Svanadze, A.Scalia, Potential method in the theory of thermoelasticity with microtemperatures for microstretch solids, Proceedings of the 10th International Congress on Thermal Stresses, 31.05 – 4.06, 2013, Nanjing, China, CD of Papers, 4p.
- S.Mukhigulashvili, Nonlocal boundary value problem for strongly singular higher-order linear functional-differential equations. Electron. J. Qual. Theory Differ. Equ. 2013, No. 33, 38 pp.
- S.Mukhigulashvili, The Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations. Czechoslovak Math. J. 63(138) (2013), no. 1, 235-263.
ინსტიტუტის თანამშრომლები
სრული პროფესორები:
- სულხან მუხიგულაშვილი
- მერაბ სვანაძე
- გიორგი ხიმშიაშვილი (ინსტიტუტის დირექტორი)
ასოცირებული პროფესორი:
- გიორგი რაქვიაშვილი
საკონტაქტო ინფორმაცია
სულხან მუხიგულაშვილი
E219
599 724 106
mukhig@iliauni.edu.ge
გიორგი რაქვიაშვილი
E219
597 330 982
giorgi.rakviashvili@iliauni.edu.ge
მერაბ სვანაძე
E217
577 553384
svanadze@iliauni.edu.ge
გიორგი ხიმშიაშვილი
F307
599 938241
giorgi.khimshiashvili@iliauni.edu.ge
ინსტიტუტები » ყველას ნახვა